

Tuesday, 27. November 2018 Rome, Italy

The contribution of the FORBIO project to the sustainability development of bioenergy

German case study: Agronomic and techno-economic feasibility

Dirk Knoche & Raul Köhler

Forschungsinstitut für Bergbaufolgelandschaften e.V.

Brauhausweg 2 03238 Finsterwalde www.fib-ev.de

Rainer Janssen & Rita Mergner

WIP Renewable Energies

Sylvensteinstr. 2 31369 München

German Case Study – Metropolis region *Berlin & Brandenburg*

Evaluation of the most promising bioenergy value chains on underutilized land

- Lignite Reclamation
 Sites
- Sewage Irrigation
 Fields

German Case Study – Metropolis region *Berlin & Brandenburg*

 Northeast German Lowlands 50-180 m a.s.l.

landscape formative:

Quaternary glacial and fluvial sands covering loose, lignite bearing sediments of the Middle and Upper Miocene

- Western Atlantic to
 East sub-continental climate
 - mean annual temperature: 7,0 to 9,5 °C (+/- 20 °C) average precipitation: 500 to 700 mm 50 % in the vegetation period climatic water balance (vp): -150 to -200 mm

German Case Study I - Scenario 1 Lignite Reclamation Sites

Eastern German Lignite district – Land use distribution on reclamation sites

Production potential on lignite reclamation sites

Ecosystem development at Point Zero

A profitable feedstock production without endangering the overriding reclamation targets

Lucerne + *Sorghum* techno-economic feasibility

Scenario 1 Utilization of biomass in a new biogas plant for biomethane production, within a binding crop rotation for agricultural reclamation sites: Lucerne (1-3rd yr) + Sorghum (4th yr) + wheat (5th yr) + rye & Sorghum (6th yr)

Reference area: 7,295 hectares agricultural land, 6 annual production blocks of 1,216 ha, which ensure a steady feedstock supply

Investment period: 20 years

Yield:

Lucerne 5 Mg_{DM}/ha/yr *Sorghum* 10 Mg_{DM}/ha/yr

Lucerne + Sorghum crop rotation - costs & income

Costs		Million EUR/20 yr
investment	biogas plant for biomethane (3.1 MWel)	7.7
	upgrading installation (amine gas treating)	2.0
operating	10 % of investment per year	1.0
cultivation	Lucerne: 534 EUR/ha/yr; Sorghum: 751 EUR/ha/yr	37.7 + 36.5
total costs (new inve	estment)	85.1

Income		Million EUR/20 yr
biomethane	feed-in of biogas into the gas grid (0.07 EUR kWh)	54
direct payments	255 EUR/ha/yr	31
total income		85

Conclusions

- At Lignite Reclamation Sites the biomethane production based on a conventional energy cropping sequence is economically questionable at the moment.
- The striking point is the added value by upgraded products, calling even more for individual solutions and synergies on farm level.
- Both, national biorefineries roadmap and the regional energy strategy claims for a wide-ranging combined material and energetic utilization and cascade use.
- All the more it makes sense to use and develop already well-established production and processing structures.

German Case Study II - Scenario 2 and Scenario 3 Disused Sewage Irrigation Fields

Disused irrigation fields for urban and industrial waste-water cleaning

Total area: 9,981 hectares

71 complexes

data source: Ritschel & Kratz (2000)

Land-use change and perspectives for energy cropping

Cropping on low-yielding and contaminated fields

Most promising value chains

Scenario 2 Miscanthus cultivation and 2 processing pathways

Scenario 3 Utilization of grass and 2 processing pathways

Reference area: 1,140 hectares agricultural land (grassland) in the Southern surroundings of Berlin (*Berliner Umland*)

Investment period: 20 years

Yield: Miscanthus 15 Mg_{DM}/ha/yr permanent grassland 3 Mg_{DM}/ha/yr

Miscanthus - techno-economic feasibility

Option 1 Sale of *Miscanthus* chips to three **existing biomass power plants** nearby (4-20 km): *Ludwigsfelde, Henningsdorf, Königs-Wusterhausen*

Option 2 Combustion of Miscanthus chips in a new CHP biomass power plant
power-heat coupling / cogeneration

Miscanthus - techno-economic feasibility

Option 1 Sale of *Miscanthus* chips to three **existing biomass power plants** nearby (4-20 km): *Ludwigsfelde, Henningsdorf, Königs-Wusterhausen*

Option 2 Combustion of Miscanthus chips in a new CHP biomass power plant
 power-heat coupling / cogeneration

Miscanthus - costs & income

Costs		Million EUR/20 yr
cultivation	establishment of plantation (3.208 EUR/ha)	3.7
management	fertilization, crop protection, etc. (24 EUR/ha/yr)	0.5
logistics	harvest (278 EUR/ha/yr)	6.3
	transport (shortest/average distance)	2.6 - 6.2
Option 1 total costs (existing plants)		13.1 - 16.7
Option 2 total costs	(new investment)	40. 0

Income		Million EUR/20 yr
Option 1.1	sale of Miscanthus chips (80 EUR/Mg _{DM})	26.4
Option 1.2	sale of Miscanthus chips (50 EUR/Mg _{DM})	16.5
Option 2.1	100 % electricity (0.1488 EUR/kWh)	88.0
Option 2.2	100 % heat (0.05 - 0.09 EUR/kWh)	44.0 - 78.0

Permanent grassland - techno-economic feasibility

Option 1 Sale of grass to an existing **biogas plant** nearby (Ø 12 km, *Groß Machnow, Blankenfelde, Mahlow 1-3*) - biomethane production

Option 2 Utilization in a **new grass biorefinery** linked to an existing biogas plant (retrofitting) - production of basic biochemicals

Permanent grassland - techno-economic feasibility

Option 1 Sale of grass to an existing **biogas plant** nearby (Ø 12 km, *Groß Machnow, Blankenfelde, Mahlow 1-3*) - biomethane production

Option 2 Utilization in a **new grass biorefinery** linked to an existing biogas plant (retrofitting) - production of basic biochemicals

Permanent grassland - costs & income

Costs		Million EUR/20 yr
management	mowing (41.5 EUR/ha/yr)	0.6
	baling (14.5 EUR/bale)	1.0
logistics	transport / average distance (68 EUR/h)	0.1
Option 1 total costs (existing plants)		1.7
Option 2 total costs (new investment/retrofitting)		4.0

Income		Million EUR/20 yr
Option 1	sale of grass silage (60 EUR/Mg _{DM})	4.1
Option 2	sale of amino acids (84 - 120 Mg / 4,000 EUR/Mg)	6.7 - 9.6
	sale of lactic acid (36 Mg / 600 EUR/Mg)	0.4

Conclusions

- For disused Sewage Irrigation Fields a profitable (1) cultivation of Miscanthus is possible, despite challenging cropping and some management risks.
- Even more the low-input (2) utilization of semi-natural grassland as part of the regular landscape maintenance makes sense.
- Because of the scattered ownership structure and inadequate biomass supply any *big solution* fails, especially the biofuel production is quite unrealistic.
- Existing small- to medium-sized processing routes should be exploited, notably by biorefining and co-combustion.

Green is our color of future

- In both cases lignite reclamation land and sewage irrigation fields the production / extraction of higher-priced basic biochemicals and other raw material use options should be promoted.
- Farmers and other stakeholders must be encouraged to invest in an upgraded decentralized biomass utilization / *retrofitting* of existing plants / *biorefining*.
- For sensitive sites a financial compensation for providing ecosystem services is worthy of discussion: environmental protection - land cover - soil restoration - phytoremediation - landscape maintenance, etc.

Thank you for taking your precious time & paying attention!

