

Sustainability assessment: German Case Study

Marco Colangeli Programme Adviser Food and Agriculture Organization of the United Nations

> Tuesday, 27 November 2018 FAO Headquarters Rome, Italy

FORBIO

FULL RESULTS AVAILABLE: HTTPS://FORBIO-PROJECT.EU/DOCUMENTS

AIR QUALITY (GHG + NON-GHG Emissions)

In the <u>baseline scenario</u> the reference fuel used is natural gas. The emission intensity of natural gas is $56 \text{ gCO}_{2eq}/\text{MJ}$ (Biograce, 2014).

Conventionally, biomethane is a substitute of natural gas for transport or residential uses

The technology employed for the production of biomethane starts for the anaerobic digestion of biomass and the subsequent upgrading of the biogas to biomethane. Biomethane is a co-product in the case of the sewage fields and the main and only product in the case of the lignite reclamation sites.

AIR QUALITY (GHG + NON-GHG Emissions)

■ FSTK PRODUCTION ■ INPUTS ■ FSTK TRANSPORT ■ LEAKAGE ■ FUEL TRANSPORT

AIR QUALITY (GHG + NON-GHG Emissions)

In the L+S scenario (lignite mining site), the carbon intensity of the system would be 12.55 gCO2eg/MJ without considering the leaking of methane, and more realistically 45.95 gCO2eq/MJ when leave FSTK TRANSPORT, 0.36%. the use of the same This would give ar amount of energy LEAKAGE, 72.68%, ESTK PRODUCTION INPUTS ESTK TRANSPORT LEAKAGE FUFL TRANSPORT

SOIL QUALITY

Minimal or No changes in soil quality would be observed in the sewage fields because the native vegetation would only be harvested.

The cultivation of alfalfa and sorghum would have effects on soil quality. These have been estimated starting from information provided by FIB and WIP.

The L1 scenario would add 6 tons of manure/ha which would contribute to fixing 23 kg of SOM per ha per year.

In scenario S1, the considerable demand for manure (17,000 kg/ha/yr) translates into higher accumulation rates of SOM in the soils, equal to about 2,397 kg ha-1 yr-1.

EMPLOYMENT

Minimal to no effects would be observed in the case of biomethane from sewage fields because the native vegetation would only be harvested and transported to an already existing biorefinery/biomethane plant.

In the lignite mining:

Lucerne and sorghum require 2.07 ours of work per ha per year.

The cumulative surface of 7,295 ha = 15,100 working hours/year or 107 Person Months = total of 9 full time jobs (or the equivalent additional part time or seasonal jobs).

Jobs created at the biomethane plant = 4 full time permanent jobs.

Total : <u>23 new full time year-round jobs</u>.

ENERGY BALANCE

	AT PAIN								
NE NE	T ENERGY BALANCE								
			МЈ	28.488.600	0	0	0	0	0
Ciai	BY PRODUCTS FROM GREENREFINERY		TONNES	872	0	0	0	0	0
			MJ	21.803	0	0	0	0	0
	TOTAL EN	ERGY OUTPUT	MJ	38.234.318	0	0	0	0	0
	FEEDSTOCK PRODUCTION		TEI	704	0	0	0	0	0
		MJ/tfeedstock	TFO	16.500	0	0	0	0	0
		Net Energy Value	TFO-TFI	15.796	0	0	0	0	0
		Net Energy Ratio	TFO/TFI	23,45	0,00	0,00	0,00	0,00	0,00
	FEEDSTOCK TRANSPORT and PROCESSING INTO FUEL		TFI	23	0	0	0	0	0
		MJ/tfeedstock	TFO	13.153	0	0	0	0	0
		Net Energy Value	TFO-TFI	13.130	0	0	0	0	0
		Net Energy Ratio	TFO/TFI	579,53	0,00	0,00	0,00	0,00	0,00
	ENERGY EFFICIENCY OF INT	TERNAL COMBUSTION ENGINES							
		MJ/tfeedstock							
		Net Energy Value	TFO-TFI	3.676,35	0,00	0,00	0,00	0,00	0,00
		Net Energy Ratio	TFO/TFI	0,28	0,28	0,28	0,28	0,28	0,28
	LIFECYCLE ENERGY EFFICIE	NCY OF THE STUDIED VALUE CHA	NS	\sim					
		Net Energy Ratio	TFO/TFI	6,34	0,0000	0,0000	0,0000	0,0000	0,0000

In the case of spontaneous grass for biomethane the final EO/EI ratio is 6.34.

ENERGY BALANCE

the net energy ration of the system would be 5.15 for Lucerne biomethane and 5.71 for sorghum (Figure 72), considering that the share produced is 53% from Lucerne and 47% from sorghum, the weighted average TFO/TFI would be 5.41.

FEEDSTOCK PRODUCTION		TFI	925	156	0	0	0
	MJ/tfeedstock	TFO	16.019	16.400	0	0	0
	Net Energy Value	e TFO-TFI	15.094	16.244	0	0	0
	Net Energy Ratio	TFO/TFI	17,32	105,09	0,00	0,00	0,00
FEEDSTOCK TRANSPORT and PROCESSING INTO FUEL		. TFI	39	16.935.719	0	0	0
	MJ/tfeedstock	TFO	10.434	0	0	0	0
	Net Energy Value	e TFO-TFI	10.395	-16.935.719	0	0	0
	Net Energy Ratio	TFO/TFI	268,36	0,00	0,00	0,00	0,00
ENERGY EFFICIENCY OF INT	FERNAL COMBUSTION ENG	GINES					
	MJ/tfeedstock						
	Net Energy Value	e TFO-TFI	2.910,63	-4.742.001,20	0,00	0,00	0,00
	Net Energy Ratio	TFO/TFI	0,28	0,28	0,28	0,28	0,28
LIFECYCLE ENERGY EFFICIE	NCY OF THE STUDIED VALU	JE CHAINS					
	Net Energy Ratio	TFO/TFI	5,1486	5,7117	0,0000	0,0000	0,0000
					n		
BIODIVERSITY L	UC S-BASELINE	S-TARGET LAND TEN.	INCOME J	OBS ENERGY ACCESS	EC-BASELINE	EC-TARGET	PRODUCTIVITY NE

Thank you

